The

**period**of oscillation of a simple pendulum**does**not depend on the**mass**of the bob. By contrast, the**period**of a**mass**-**spring**system**does**depend on**mass**. For a**mass**-**spring**system, the**mass**still**affects**the inertia, but it**does**not cause the force. The**spring**(and its**spring**constant) is fully responsible for force.Hereof, what affects the period of a mass on a spring?

The

**period**of oscillation is, therefore, directly proportional to the**mass**and inversely proportional to the**spring**constant. A stiffer**spring**with a constant**mass**decreases the**period**of oscillation. Increasing the**mass**increases the**period**of oscillation.How does the mass affect the period of a pendulum?

(

**Mass does**not**affect**the**pendulum's**swing. The longer the length of string, the farther the**pendulum**falls; and therefore, the longer the**period**, or back and forth swing of the**pendulum**. The greater the amplitude, or angle, the farther the**pendulum**falls; and therefore, the longer the**period**.)Why does the mass not affect the period of the pendulum?

The

**mass**on a**pendulum does**not**affect**the swing because force and**mass**are proportional and when the**mass**increases so**does**the force. As the force increases so**does**the acceleration and along with gravity are the factors that**affect**the**pendulum**swing. Therefore, the**mass does**not**affect**the**period**of the**pendulum**.