**Least Significant Bit algorithm**for image steganography. The

**LSB**is the lowest significant bit in the byte value of the image pixel. The

**LSB**based image steganography embeds the secret in the least significant bits of pixel values of the cover image (CVR).

Also asked, what is the most significant bit and least significant bit?

In computing, the

**most significant bit**(MSB, also called the high-order**bit**) is the**bit**position in a binary number having the greatest value. The MSB is sometimes referred to as the left-**most bit**due to the convention in positional notation of writing more**significant**digits further to the left.1

## Which one is the least significant bit?

Sometimes abbreviated as LSB, the

**least significant bit**is the**lowest bit**in a series of numbers in binary; the LSB is located at the far right of a string. For example, in the binary number: 10111001, the**least significant bit**is the far right 1.2

## What is LSB steganography?

**Least Significant Bit**Embeddings (

**LSB**) are a general

**steganographic**technique that may be employed to embed data into a variety of digital media, but one of the most studied applications is using

**LSB**embedding to hide one image inside another.

3

## What is the most significant bit and least significant bit?

In computing, the

**least significant bit**(LSB) is the**bit**position in a binary integer giving the units value, that is, determining whether the number is even or odd. It is analogous to the**least significant**digit of a decimal integer, which is the digit in the ones (right-**most**) position.4

## What is the least significant digit?

Sometimes abbreviated as LSD, the

**least significant digit**is the lowest**digit**in a number, located at the far right of a string. For example, in the number 2006, the "6" is the**least significant digit**.5

## What is the most significant digit?

In computing, the

**most significant**bit (MSB, also called the high-order bit) is the bit position in a binary number having the greatest value. The MSB is sometimes referred to as the left-**most**bit due to the convention in positional notation of writing more**significant digits**further to the left.6

## What are significant figures examples?

For

**example**, 0.00052 has two**significant figures**: 5 and 2. Trailing zeros in a number containing a decimal point are**significant**. For**example**, 12.2300 has six**significant figures**: 1, 2, 2, 3, 0 and 0. In addition, 120.00 has five**significant figures**since it has three trailing zeros.7

## How many significant figures are in 1000?

so 1000. is our

**four**-significant-figure answer. (from rules 5 and 6, we see that in order for the trailing zeros to "count" as significant, they must be followed by a decimal. Writing just "1000" would give us only**one significant**figure.)8

## What does two significant figures mean?

e.g. In 64,492 , 6 is the first

**significant figure**.(sig.fig.) When we round off 64,492 to**two**sig. figs, that means in the answer we should have**two**non zero**figures**.The third**figure**(which is 4) is less than 5, so we drop them to zeros. Let's round off 64,492 to: (a) 1**significant figure**which is 60,000.9

## What does it mean to 3 significant figures?

Rounding to

**3 significant figures**is probably the most common way of rounding off. Rounding the number off to**3 significant**fugures**means**you require**3**non-zero**digits**from the start of the number. So in example 1, 27.1258 gets rounded to 27.1.10

## What are the rules of significant figures?

There are three rules on determining how many significant figures are in a number:

**Non**-zero digits are always significant. Any zeros between two significant digits are significant. A final zero or trailing zeros in the decimal portion ONLY are significant.11

## Why is zero significant?

If a

**zero**is found between**significant**digits, it is**significant**. Zeros can be used as (insignificant) place holders to the left of**significant**digits if the number is a decimal. For example, a mass of 42 g has two**significant**digits. Expressed in kilograms, the mass of 0.042kg should still have two**significant**digits.12

## How many significant figures are in the number 500?

Examples | ||
---|---|---|

500. | 3 sig. figs. | 500: The last zero is estimated number |

4 sig. figs. | : The zero after the "7" is the estimated number.. | |

4.50x10^{2} | 3 sig. figs. | 4.50x10^{2}: Because zeros after the decimal are significant, the last zero is the estimated measurement. |

Note: |

13

## How many significant figures 50 has?

Trailing zero: Counts as a significant figure if the number contains a decimal point. However, it does not count if the number does not contain a decimal point. Example: 50.00 (

**4 significant figures**), 50 (**1 significant**figure), 50. (**2 significant figures**).14

## How many significant figures are in the number 20?

Chem 2.3 - Using Scientific Measurements

A | B |
---|---|

How many significant figures are in the number 20? | 1 |

How many significant figures are in the number 20. ? | 2 (the decimal place makes the zero significant) |

How many significant figures are in the number 20.0 ? | 3 |

How many significant figures are in the number 0.04604 ? | 4 |

15

## How many significant figures are in the number 150?

150.0 has

**4 significant figures**whereas we are uncertain as to whether 150 has 2 (150) or 3 (150). The only way to be certain is to write the number in scientific notation. 1.5 x 10^{2}has**2 significant figures**whereas 1.50 x 10^{2}has 3 significant figures.